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Existence of a Hexatic Phase in Porous Media
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Molecular simulations for simple fluids in narrow slit-shaped carbon pores exhibit crystal-hexatic and
hexatic-liquid transitions that are consistent with Kosterlitz-Thouless-Halperin-Nelson-Young theory. The
temperature range over which the hexatic phase is stable is dramatically widened under confinement.
Remarkably, the transitions, which are continuous for a single adsorbed layer, become weakly first order
when the pore can accommodate two molecular layers. Nonlinear dielectric effect measurements for CCl4
and aniline in activated carbon fibers (pore width 1.4 nm) show divergence at these transitions, confirming
the hexatic phase.
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micron-sized colloidal particles confined between parallel
glass plates do not have this complication [9,10], but in
some [9] cases are faced with the question of the attain-

Periodic boundary conditions were used in the x and the y
dimensions. We expect the approximation of a structure-
less graphite wall to be a good one here, since the diameter
Two-dimensional systems have a special significance for
phase transitions in which continuous symmetry is broken
(such as freezing transitions). The Mermin-Wagner theo-
rem states that true long-range order cannot exist in such
systems [1]. Nelson and Halperin [2] proposed the
KTHNY (Kosterlitz-Thouless-Halperin-Nelson-Young)
mechanism for melting of a crystal in two dimensions,
which involves two transitions of the Kosterlitz-Thouless
(KT) kind [3]: The crystal to hexatic transition occurs
through the unbinding of dislocation pairs, and the hexatic
to liquid transition involves the unbinding of disclination
pairs. The KTHNY theory predicts that for the hexatic
phase the correlation function associated with the bond
orientational order parameter decays algebraically with
exponent 0<�6 < 1=4 (quasi-long-range orientational
order), while there is only short-range translational order.

Early simulation studies on small, strictly two-
dimensional systems failed to provide compelling evidence
to support the KTHNY melting scenario (for a review, see
Strandburg [4]). However, it was demonstrated by Bagchi
et al. [5], using a systematic scaling analysis on large sys-
tem sizes, and subsequently by Jaster [6], that the equili-
brium properties of a two-dimensional system of disks with
repulsive interactions are indeed consistent with the
KTHNY theory of melting, suggesting the earlier studies
were plagued by serious system size effects.

The hexatic phase was first observed experimentally in
an electron diffraction experiment on a quasi-two-
dimensional system of a thin film of a liquid-crystalline
material (see [7] and references therein). However, the
intrinsic presence of a herringbone symmetry and its cou-
pling to the hexatic symmetry in multilayer liquid-crystal-
line films causes the phase behavior to be more compli-
cated [8]. Quasi-two-dimensional systems consisting of
0031-9007=02=89(7)=076101(4)$20.00 
ment of thermal equilibrium because of large particle sizes
compared to molecular dimensions.

Activated carbon fibers (ACF) possess microcrystallites
made up of graphene sheets that tend to align in similar
directions, with slit-shaped voids between the microcrys-
tals. The spontaneous ordering of the molecules adsorbed
in these voids into distinct two-dimensional molecular
layers makes the adsorbed phase a quasi-two-dimensional
system, with none of the complications mentioned above.
Here, we investigate melting in a quasi-two-dimensional
system consisting of simple, near-spherical molecules ad-
sorbed in slit-shaped pores, using both molecular simula-
tion and experiment. The results are compared with the
predictions of KTHNY theory.

In the simulations, carbon tetrachloride is chosen as the
adsorbate to make contact with recent experimental studies
of this system. The fluid-wall potential was modeled to be
of the form of the ‘‘10-4-3’’ Steele Potential, with parame-
ters chosen to represent the strongly attractive graphite
pore [11]. The fluid-fluid Lennard-Jones (LJ) parameters
were chosen to reproduce the bulk freezing temperature at
1 atm pressure [12]. Two pore widths,H � 1�ff � �fw �
0:911 nm and H � 2�ff � �fw � 1:41 nm, where H rep-
resents the shortest distance between the planes passing
through the carbon nuclei on the surface of the opposing
pore walls, were chosen, so that the adsorbed phase had
one and two molecular layers of CCl4, respectively. The
calculations for the larger pore width also enable a direct
comparison with experimental measurements for CCl4
confined in porous activated carbon fiber ACF A-10, of
mean pore widthH � 1:4 nm. The extent of the rectilinear
simulation cell was 180�ff � 180�ff (93 nm� 93 nm)
in the xy plane so that correlations up to 90�ff were
captured in the simulations (z is normal to the pore walls).
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FIG. 1. Ginzburg parameter, �GL, for four different system
sizes: �10�ff � 10�ff �H�, �40�ff � 40�ff �H�, �60�ff �
60�ff �H�, and �180�ff � 180�ff �H�. The simulations are
for a pore width, H � 1:4 nm, consisting of two adsorbed layers
of CCl4. Finite system size calculations are self-consistent in the
regime �GL 
 1.
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FIG. 2. System size scaling analysis for two systems with
different pore widths, H � 0:91 nm and H � 1:4 nm. The error
bars are of the same size as the symbols.
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of the LJ molecule (0.514 nm) is much larger than the C-C
bond length in graphite (0.14 nm). We use the Landau-
Ginzburg formalism [12] to calculate the free energy sur-
face as a function of the hexatic bond-orientational order
parameter, 6;j in layer j, as defined in Ref. [12].

Grand canonical Monte Carlo simulations were used to
study the freezing behavior of LJ CCl4 in our model graph-
ite pore. Our simulation cell contained up to 64 000 mol-
ecules. The state conditions were such that the confined
phase was in equilibrium with bulk LJ CCl4 at 1 atm
pressure. The simulations were started from a well equili-
brated confined liquid phase at T � 400 K, and in succes-
sive simulation runs the temperature was reduced. Equili-
bration was for a minimum of eleven billion steps. The
two-dimensional, in-plane positional and orientational cor-
relation functions [gj�r� and G6;j�r� of layer j], were
monitored to keep track of the nature of the confined phase.
The positional pair correlation function is the familiar
radial distribution function. The bond orientational pair
correlation function is G6;j��� � h�

6;j�0�6;j���i, where
~�� � xêex � yêey.

Our results for the two confined molecular layers of
CCl4 at three different temperatures were as follows [13]:
The high temperature phase at T � 360 K was character-
ized by an isotropic g�r� and exponentially decaying
G6;j�r�, and, hence, was a liquid. At T � 330 K, the posi-
tional pair correlation function was isotropic and the ori-
entational correlation function decayed algebraically, a
signature of the hexatic phase. At T � 290 K, the confined
phase was a two- dimensional hexagonal crystal, with
quasi-long-range positional order and long-range orienta-
tional order [13]. These features were verified using system
size scaling analysis as discussed below. Since simulation
results are always for a finite system size, we have estab-
lished the self-consistency of our calculations by comput-
ing the Ginzburg parameter [14], �GL, for the different
phases as a function of temperature and system size:

�GL �
h2

6;ji

h6;ji
2

�
I�L�

h6;ji
2
	 1; (1)

where L2 �H � V, the volume of the system, and I�L� is
given by

I�L� �

R
V d ~��G6;j���R

V d ~��
: (2)

The Ginzburg parameter is calculated by numerically in-
tegrating Eq. (2). If �GL 
 1, the simulations are self-
consistent, i.e., (i) fluctuations do not destroy the ordered
phase observed in the simulations, and (ii) the scaling
behavior is not mean-field-like. It is clear from Fig. 1
that, for system sizes greater than 60�ff � 60�ff �H,
and for the temperature range of our simulations, our
results are self-consistent. Therefore, two system sizes,
60�ff � 60�ff �H and 180�ff � 180�ff �H, were
used for system size scaling analysis. In order to study
076101-2
the scaling properties of the orientational correlation func-
tion, we plot log�I�LB�=I�L�� as a function of log�LB=L� in
Fig. 2, where L was chosen to be 180�ff and three differ-
ent values, LB � 60�ff, 90�ff, and 135�ff, were used.
The integral I�LB� is evaluated fromG6;j��� for the 180�ff
system, by integrating over a subvolume of dimension
LB � LB �H instead of the total volume. A slope of 	2
corresponds to having a finite correlation length (liquid), a
slope of 	1=4 corresponds to an algebraic decay of the
orientational correlation function with exponent 	1=4
(hexatic), and a zero slope corresponds to true long-range
order [5]. In Fig. 2, the lines correspond to the scaling
predicted by the KTHNY theory [5] and the symbols are
our simulation results at three different temperatures;
agreement between the simulations and theory is excellent.
Therefore, the correlations in the one-layer system and the
two-layer system are both consistent with the KTHNY
predictions.
076101-2
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The Landau free energy surface, ��6;j� �
	kBT logP�6;j�, where P�6;j� is the probability distri-
bution of the order parameter, was calculated using um-
brella sampling [12] for the two pore widths at two
different temperatures. Since our aim was to determine
the order of the phase transition using the Lee-Kosterlitz
scaling analysis [15] of the free energy surface, we ob-
tained the Landau free energy functions at the exact tran-
sition temperatures for the corresponding system size. This
was done as follows: The Landau free energy surface was
calculated at a temperature close to the transition, from
which we calculated the grand free energies at that tem-
perature [12]. Then, by numerically integrating the
Clausius-Clapeyron equation, d��=T�=d�1=T� � hUi	
�hNi, we located the exact transition temperature. The
Landau free energy function was recalculated at the tran-
sition temperature by using a weighting function equal to
exp� ��6;j�� from the initial calculation. This procedure
was repeated for each system size.

Shown in Fig. 3 are the Landau free energy plots for the
smaller pore width H � 0:91 nm [curves (1) and (2)], for
two different system sizes at their respective liquid-hexatic
transition temperatures. The presence of the two phases
(‘‘L’’ and ‘‘H’’) of the system is clearly seen along with
their relative thermodynamic stabilities; the nature of these
phases was determined from the positional and orienta-
tional correlation functions. The free energy barrier be-
tween the liquid and the hexatic phases is seen to be
 4kBT, and more importantly is system size independent.
This is a clear indication of a second order phase transition
in the thermodynamic limit [15], and is consistent with the
FIG. 3. Landau free energy functions for two different system
sizes, 60�ff (solid lines) and 180�ff (dashed lines). Curves (1)
and (2) are for pore width H � 0:91 nm at the liquid-hexatic
transition, for the 60�ff system (curve 1, T � 390 K) and
180�ff (curve 2, T � 387 K) systems, respectively. Curves
(3) and (4) are for pore width H � 1:41 nm at the hexatic-crystal
transition, for the 60�ff system (curve 3, T � 293 K) and
180�ff (curve 4, T � 290 K) systems, respectively.
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predictions of the KTHNY theory. A similar result was
obtained for the hexatic-crystal transition by repeating
these calculations at the hexatic-crystal transition tempera-
tures for the two system sizes [13]. Also shown in Fig. 3 are
the Landau free energy plots for the larger pore width
[curves (3) and (4)], which has two layers of CCl4 ad-
sorbed, for two different system sizes at their respective
hexatic-crystalline transition temperatures. Remarkably,
the free energy barrier between the hexatic and crystalline
phases is seen to be linearly dependent on system size, a
clear indication of a first-order phase transition in the
thermodynamic limit [15], contrary to the perfect 2D
case of the KTHNY scenario. A similar result was obtained
for the liquid-hexatic transition by repeating these calcu-
lations at the liquid-hexatic transition temperatures for the
two system sizes [13].

The scaling of the order-parameter correlation func-
tions (Fig. 2) is consistent with the KTHNY behavior for
both pore widths, implying that it is the vortex excitations
that govern the equilibrium behavior in these quasi-two-
dimensional systems and that the melting transition is
defect mediated. Moreover, for the quasi-two-dimensional
monolayers, the Kosterlitz-Thouless transitions are con-
tinuous, while, for quasi-two-dimensional bilayers, the
Kosterlitz-Thouless transitions become first order. We as-
cribe this deviation from 2D behavior to the interactions
between the defect configurations in different layers. If
we consider two planes of xy models interacting with
each other, a higher entropy scenario exists, where a vor-
tex in one layer is aligned with a vortex of the opposite
winding number in the other layer, with the cores dis-
placed by distance A. Such a situation corresponds to a
free energy [13]:

�F � �F�KT�

� JA log�L� 	 2kBT log�1� 2$A� � �$	 1�J0L2;

(3)

where J is the interaction of nearest neighbors of spins with
the same alignment, L is the in-plane distance between
vortex cores, �F�KT� � �2$J	 2kBT� log�L� is the
Kosterlitz-Thouless free energy [3], and J0 is the nearest-
neighbor interaction between layers and, in general, can be
different from J. Treating L as the order parameter, the free
energy profile is obtained by the locus of points that
minimize �F, the variational parameter being A. The locus
of points minimizing �F is qualitatively different from the
true KT behavior, given by �F�KT�. In particular, at small
separations of the vortices, the bound state actually exists
as a metastable state for T > Tc, a clear signature of a first-
order phase transition [13].

To seek experimental evidence for the confined hexatic
phase, we have carried out differential scanning calorim-
etry (DSC) and nonlinear dielectric effect (NDE) measure-
ments for CCl4 and aniline confined in an activated carbon
fiber (ACF-10) material having a mean pore size of
076101-3



TABLE I. Transition temperatures from simulation and experi-
ment for CCl4 and aniline in ACF-10.

Low Tc=K (H=C) High Tc=K (L=H)
Fluid Simulation Experiment Simulation Experiment

CCl4 293 298,a 295
b,c

348 K 353,a,b 352
c

Aniline 296 [16] 298,b 299
c

336 [16] 324,b 323
c

aDSC. bDRS [16]. cNDE.

FIG. 4. NDE in m2=V2 vs T for CCl4 confined in ACF at
one atm, showing liquid-hexatic (L=H) and hexatic-crystalline
(H=C) transitions. The symbols correspond to the experimental
measurements and the solid lines are fits to the scaling laws with
exponents from KTHNY theory.
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H � 1:4 nm. This material is known to have slit-shaped
pores having a narrow pore size distribution [12,13]. In
addition, dielectric relaxation spectroscopy (DRS) meas-
urements have been carried out for aniline in this material
[16]. The DSC scans show peaks, and the NDE and DRS
measurements show sharp changes, indicating phase tran-
sitions at temperatures close to those predicted in the
simulations, as shown in Table I. These results also show
that the hexatic phase is stable over a wide temperature
range, 55 K for CCl4 and 26 K for aniline. The DRS
measurements [16] for aniline provide the dielectric re-
laxation times; for the temperature regions below 298 K
and above 324 K these times are typical of crystal and
liquid phases, respectively, while between 298 and 324 K
the times are of the order of 10	5 s, typical of a hexatic
phase.

For both CCl4 and aniline, we observed large values for
the NDE � �'=E2 near the two transition temperatures.
Here �' is the change in the dielectric susceptibility in a
strong electric field E [17]. The NDE diverged at these
transition points, and the divergence was consistent with
the scaling behavior 1=NDE� exp�	A=jT 	 Tcj��, with
� � 0:5 for the liquid-hexatic (high temperature) transi-
tion and � � 0:37 for the hexatic-crystal (low temperature)
transition, in agreement with KTHNY theory [13]. NDE
results for CCl4 in ACF are shown in Fig. 4.

In conclusion, we reiterate our important findings:
(i) Simulations and system size scaling confirm the exis-
tence of the hexatic phase in pores, even in the thermody-
namic limit. Experimental results show strong support for
the hexatic phase in ACF. (ii) The hexatic phase is sta-
bilized in the pore relative to the bulk for strongly attract-
ing walls, and becomes more stabilized as the strength
of the fluid-wall interaction increases [12]. Thus, the T
range over which the hexatic phase is observed is much
larger in confined systems than in bulk ones. (iii) In con-
fined systems, it is easy to observe the crystalline-hexatic
and hexatic-liquid transitions even for simple fluids (e.g.,
inert gases, CCl4)— there is no need for complex mole-
cules (liquid crystal forming) or colloidal suspensions.
(iv) We find second order transitions when the pore con-
tains only one adsorbed layer. When the pore width is
increased to allow two adsorbed layers, the behavior
changes to a first-order transition. This change in behavior
is explained by interaction between vortices in different
adsorbed layers.
076101-4
This work was supported by grants from the National
Science Foundation (Grant No. CTS-9908535) and the
Maria Sklodowska-Curie Joint fund. Computing resources
were provided by National Partnership for Advanced
Computational Infrastructure (Grant No. MCA93S011).
[1] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

[2] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457
(1979).

[3] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124
(1972).

[4] K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
[5] K. Bagchi, H. C. Andersen, and W. Swope, Phys. Rev.

Lett. 76, 255 (1996).
[6] A. Jaster, Phys. Rev. E 59, 2594 (1999).
[7] J. D. Brock, R. J. Birgeneau, J. D. Lister, and A. Aharony,

Phys. Today 42, No. 7,52 (1989); C. F. Chou, A. J. Jin,
S. W. Huang, and J. T. Ho, Science 280, 1424 (1998).

[8] D. L. Lin, J. T. Ou, L. P. Shi, X. R. Wang, and A. J. Jin,
Europhys. Lett. 50, 615 (2000).

[9] A. H. Marcus and S. A. Rice, Phys. Rev. E 55, 637 (1997);
C. A. Murray and D. H. Van Winkle, Phys. Rev. Lett. 58,
1200 (1988).

[10] K. Zhan, R. Lenke, and G. Maret, Phys. Rev. Lett. 82,
2721 (1999).

[11] W. A. Steele, Surf. Sci. 36, 317 (1973).
[12] R. Radhakrishnan, K. E. Gubbins, and M. Sliwinska-

Bartkowiak, J. Chem. Phys. 116, 1147 (2002).
[13] R. Radhakrishnan, K. E. Gubbins, and M. Sliwinska-

Bartkowiak (to be published).
[14] P. M. Chaikin and T. C. Lubensky, Principles of

Condensed Matter Physics (Cambridge University Press,
Cambridge, England, 1995).

[15] J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990).
[16] M. Sliwinska-Bartkowiak, R. Radhakrishnan, and K. E.

Gubbins, Mol. Sim. 27, 323 (2001).
[17] A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam,

1980).
076101-4


