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Heat conduction and near-equilibrium linear regime
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A comparison of experiment on heat conduction in a rod with a calculation shows that if the conditions for the near-equilibrium linear regime
are fulfilled, the differences between the rigorous solution of the minimum entropy production problem and its linearized version are small.
They usually fall within the limits of experimental error. Hence, it may well illustrate that the Prigogine’s theorem of minimum entropy
production, despite its well-known limits recalled in a recent discussion, may serve as a useful approximation to the problem in question.
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Una comparación del experimento en la conducción del calor en una barra del aluminio con un cálculo muestra, que si las condiciones para
el régimen lineal del equilibrio cercano están cumplidos, las diferencias entre la solución exacta del problema de la producción ḿınima de la
entroṕıa y su versíon linealizada son pequeñas. Las diferencias citadas caen generalmente dentro de los lı́mites del error experimental. Por
lo tanto, pueden mostrar bien que el teorema de Prigogine de la producción ḿınima de la entroṕıa, a pesar de sus lı́mites bien conocidos,
recordados en una discusión reciente, puede servir como una aproximación útil al problema bajo consideración.

Descriptores: Termodińamica del desequilibrio; conducción del calor.

PACS: 05.70.Ln; 44.10.+i

1. Introduction

In Ref. 1 it has been shown that measurements performed
with the apparatus described in classical textbooks and orig-
inally applied for determination of the heat conduction coef-
ficient κ, can be used for a classroom illustration of the Pri-
gogine’s theorem [2]. It says that in the near-equilibrium lin-
ear regime (which includes, if not implies, small temperature
differences), the total entropy production in a system subject
to flow of heat, reaches a minimum value at the nonequilib-
rium stationary state, characterized in our example by a con-
stant heat flow along a rod and a simple position-independent
temperature gradient. Hence, at the nonequilibrium station-
ary state the dependence of temperature on distance is linear
and satisfies the Fourier’s law [2]. It has been remarked in
note [3] that a variational approach to the problem of heat
flow in a metal rod placed between two reservoirs kept at dif-
ferent temperatures leads to an exponential profile of temper-
atureT (x) rather than a linear one, as presented in Refs. 1
and 2. However, the exponential solution forT (x) is not
stationary since∂T/∂t ∼ ∂2T/∂x2 is nonzero [4]. It is
known that Prigogine’s theorem has a limited applicability:
Hoover [4] has invoked two counterexamples to the validity
of this theorem, an old one due to Klein (cf. Ref. 5), and a
more recent one related to the Rayleigh-Bérnard flow.

This discussion [3,5] might put in doubt the sense of re-
lating the experiment with a constant flow of heat as orig-
inally sketched in Fig. 17.1, p. 386 of Ref. 2 combined
with Fourier’s law to give Eq. 17.1.5 therein, with minimiz-

ing entropy production in the linear regime (Eq. 17.2.44 in
Ref. 2). We argue that if one takes care to work in the lin-
ear regime of the nonequilibrium stationary states, the Pri-
gogine’s theorem holds in many cases with sufficient practi-
cal accuracy, if not strictly. This line of thought follows that
of Kondepudi [6] who argued that ”the difference between
the actual steady state . . . and the state . . . that minimizes the
entropy production . . . gets smaller as we approach the state
of equilibrium”. Hence, it makes sense to present its applica-
tion to the students, as suggested in Ref. 1. It may be chosen
as a part of a physicist’scurriculum vitaeenabling him or
her to practise dealing with physical rules with limited appli-
cability, but known limits. In the present case this concerns
the Prigogine’s theorem. Another, widely known example is
the linear Ohm law, taught at all levels of physics teaching
despite of, and together with, a wealth of nonlinear current-
voltage characteristics observed in physics and applied in de-
vices.

To show the accuracy with which the Prigogine’s theorem
is applicable to our experiment, we first recall a detail related
to Ref. 5, and follow by discussing the exponential solution
for T (x) [3] more closely.

Most of the details of the Klein’s counterexample to the
general applicability of Prigogine’s theorem do not matter
in our case. However, Klein has remarked that a numeri-
cal analysis of his example revealed that the steady state and
the state with minimum entropy production are practically
undistinguishable from each other for certain values of pa-
rameters [5]. In the following, we shall check if the same
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applies to the heat flow in a rod. Namely, we shall verify if
the linear dependence obtained in our experiment can serve
as a good approximation of the exponential dependence [3].
In order to perform this verification we have assembled our
own measuring setup of the type described in Ref. 7 and
measured temperatureT (x, t) as a function of positionx and
time t . The results did not essentially differ from those in
Ref. 7. Also, we have calculated a linear approximation of
the exponential dependence given in Ref. 3. Finally, we have
fitted the linear and exponential dependencies to the results
of our measurements and compared the fits.

The measuring set and results will be presented in Sec. 2.
In Sec. 3 it will be shown that Fourier’s linear dependence of
temperature on distance [1,2] represents the linear approxi-
mation of the exponential dependence [3]. It is shown that
the difference between the linear and the exponential fits to
our experimental data falls within the limits of the accuracy
of the experiment and that under well-defined conditions the
Fourier’s law of heat conduction does not exclude the approx-
imate applicability of the theorem of minimum entropy pro-
duction.

2. Experimental

The experimental setup (Fig. 1) consists of an aluminum rod
of 45 cm in length and 4 cm in diameter. One end of the
rod is placed in a cold thermal reservoir of a double-wall
cylindrical vessel C. A stream of water of a steady temper-
atureTc = 290K flows in the direction indicated by arrows
in Fig. 1 between the walls of the vessel C. The other end of

FIGURE 1. Experimental setup. C - double-wall cylindrical vessel.
The arrows indicate the direction of the flow of water between the
walls. The numbers 1 - 6 mark the points at which the temperature
is measured.

the rod is placed in a hot thermal reservoir maintained at a
temperatureTh by an electric heater (Fig. 1). The num-
bers 1 - 6 (Fig. 1) mark the points at which temperature is
measured. The lateral surface of the rod is thermally insu-
lated.

Figure 2 presents temperatureT (x, t) as a function of po-
sition x and timet , where t is the time from the moment
when the rod was put in contact with the two thermal reser-
voirs. The numbers to the right of the curves are the distances
of the six thermometers from the hot thermal reservoir. Ta-
ble I gives the data ofT (x) for t > 65 min. The device to
measureκ is usually set so that heating and cooling of the
rod at each end occurs along some finite segment of the rod,
as shown in Fig. 1, rather than at the base surfaces of the
cylinder [Fig. 3(b)] having coordinatesxh = 0 at the hot
thermal reservoir andxc = L at the cold thermal reservoir.
In practice, the determination of temperature at the coordi-
natexh = 0 and the coordinatexc = L is based on using
the quantities extrapolated from the plots in Fig. 3(a), solid
line; these extrapolated quantities are marked (*) in Table I.
The experimental error (standard deviationST ) of temper-
atureT (x) measurement is found to be 1 K. Namely, the
measurement of voltageU during the gauge procedure of the
thermoelements was preformed with errorSU = 0.01mV . It
resulted in linear dependenceT = kU with k = 24.1 K/mV
and standard regression Sk = 0.4 K/mV. To get the standard
deviationST , the values ofSU , Sk , as well as the error
Sx = 0.03 cm in determining the positionx of a thermoele-
ment are taken.

TABLE I. x-distances of the six particular thermometers from the
hot thermal reservoir (h).T (x) - temperature at a distancex from
the hot thermal reservoir. The asterisk (*) marks the extrapolated
quantities.

x[cm] 0 (xh) 4 8 12 16 20 24 27.77*(xc)

T(x)[K] 343* 335 327 320 312 304 296 290

FIGURE 2. Difference between the temperaturesT (x) of the six
thermometers and the temperature T (c) of the cold thermal reser-
voir as a function of time t . For each curve the distance x = const.
The numbers to the right of the curves mark the distances of the six
particular thermometers from the hot thermal reservoir.
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FIGURE 3. (a) The temperaturesT (x) of the six thermometers as
a function of their distancex from the hot thermal reservoir. The
points mark the steady temperaturesT (x) observed aftert > 65
min. Solid line represents the exponential fit and the dashed line -
the linear fit to the data. (b) Schematic drawing of the experimental
setup. The hot thermal reservoir T (h) maintained at a temperature
T (h) and the cold thermal reservoir (c) maintained at a temperature
T (c) are shown. The numbers 1 - 6 denote the points at which the
temperature is measured.

3. Near-equilibrium linear regime

A comparison of the Fourier’s law of heat conduction in the
rod,

Jq = −κ
∂T

∂x
, (1)

whereT is the absolute temperature,κ is the heat conduc-
tivity and Jq - is the heat flow, with the following relation
between the flow of heat and the forces [2]

Jq = −T−2Lqq
∂T

∂x
, (2)

whereLqq is constant and called a phenomenological coeffi-
cient, leads to the identification

Lqq = κT 2. (3)

In Ref. 2 the so-called near-equilibrium linear regime is
defined. Within this regimeLqq [Eq. (3)] may be treated as
a constant. “SinceT (x) is a function of position, such an
assumption is strictly not valid. It is valid only in the ap-
proximation that the change inT from one end of the system

to another is small, when compared to the averageT , i.e., if
the average temperature isTavg, then |T (x) − Tavg| ¿ 1
for all x . Hence, we may approximateT 2 ≈ T 2

avg and use
κT 2

avg in place ofκT 2” (Ref. 2, p. 359). The author of Ref. 3
has contrasted the linear approximation and the rigorous so-
lution of the problem of minimum entropy production during
heat conduction in the rod, proving that the exponential de-
pendence of temperature on distance minimized the entropy
production, although it concerned a non-stationary state [4].

It will be shown that in the setup described in Ref. 1
and used in this work the near-equilibrium linear regime is
achieved, the linear approximation is applicable and the con-
trast between the rigorous (exponential) and linear approxi-
mation solutions is smaller than the accuracy of the exper-
iment. Our data are shown in Fig. 2. The local gradients
become increasingly uniform with time an the system tends
to a final steady (time-independent) state (Table I, Fig. 3),
characterized by a constant heat flow and a simple position-
independent temperature gradient

∂T (x)
∂x

=
Tc − Th

L
, (4)

whereL = xc − xh andxh(c) denotes the coordinate of the
hot (cold) end of the rod andTh(c) = T (xh(c)). This linear
temperature distribution satisfies the Fourier law as follows:

Tf (x) = Th − (Th − Tc)
x

L
. (5)

However, as noted by Peter Palffy-Muhoray [3], in gen-
eral it is the exponential temperature distribution along the
rod which minimizes entropy production:

TM (x) = Th exp
(
− x

L
ln

Th

Tc

)
. (6)

[See Appendix A for a detailed derivation of Eq. (6)]. Now,
we shall seek for a linear approximation of Eq. (6). To this
aim we re-write it in the form

TM (x) = Th exp
(

x

L
ln

Tc

Th

)
. (7)

We expand the functionsln and exp in Eq. (7) into a
power series and drop all terms but the linear ones. Since
0 < Tc/Th < 1, we obtain

ln
Tc

Th
≈

Tc − Th

Th
(8)

On applying the approximation (8) the functionexp in Eq. (7)
expanded in a power series with only linear terms left, takes
the form

exp
(

x(Tc − Th)
LTh

)
≈ 1 +

x(Tc − Th)
LTh

. (9)

Introducing (9) into (7) one obtains the form equivalent to
Eq. (5):

TM (x) = Th exp
(

x

L
ln

Tc

Th

)
≈ Th

(
1 +

x(Tc − Th)
LTh

)

= Th − (Th − Tc)
x

L
= Tf (x).
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This shows that the linear temperature distribution [given in
Eq. (5)] and following the Fourier’s law represents a linear
approximation to the rigorous distribution [given in Eq. (6)],
which minimizes entropy production [3].

Under the externally maintained temperature gradient
∂T (x)/∂x the system cannot relax to equilibrium. Immedi-
ately after placing the rod in contact with two thermal reser-
voirs heat starts to flow and consequently an inhomogeneous,
time-dependent temperature distribution appears in the rod.
The aim of the measurements undertaken was to find the char-
acter of the time-independent temperature distribution ob-
served att > 65 min. To the experimental data (Table I,
Fig. 3) both the exponential [solid line,cf. Eq. (6)] and
linear [dashed line,cf. Eq. (5)] fits are applied. The max-
imum discrepancies between the solid and the dashed lines
are found to be less than 1 K. Hence, the maximum discrep-
ancy is comparable to the experimental error. An improved
accuracy of the experiment could reveal the differences be-
tween the linear and exponentialT (x) profiles. However, it
is easy to show that after appropriately diminishing the differ-
enceTh−Tc the discrepancies between both profiles become
again negligible. This shows that the theorem of minimum
entropy production may serve as a useful approximation to
the problem in question.

4. Conclusion

The steady (time-independent) state observed in this work
(and in Ref. 1) with temperature varying very nearly linearly
with distance along a rod, can be practically undistinguish-
able, within the limits of experimental error, from the ex-
ponential dependence of temperature on distance represent-
ing the state of minimum entropy production. This situation
strongly resembles that discussed by Klein [5].

The linear dependence of temperature on distance, which
is in agreement with the well-established Fourier’s law of
heat conduction, in fact indicates that the Prigogine’s theorem
of minimum entropy production, at least in the case of ther-
mal conduction with temperature independent thermal con-
ductivity, represents a useful approximation of satisfactory
accuracy if the conditions for near-equilibrium linear regime
are fulfilled. This approximation improves on approaching
the equilibrium, as noted long ago by Kondepudi [6].

Appendix A

In this Appendix we shall derive the differential equation for
T (x), stemming from the condition of minimum entropy pro-
duction, namely

[
∂T (x)

∂x

]2

= T (x)
∂2T (x)

∂x2
(A.1)

(see Ref. 3, Eq. (6) therein) and solve it arriving at the expo-
nential solution given above [our Eq. (6)]. We start with the

expression for the total entropy productionP in the rod given
in our previous work (Ref. 1, Eq. (7) therein):

P =

xc∫

xh

κ

[T (x)]2

(
∂T (x)

∂x

)2

dx. (A.2)

In the following we apply the following short-hand notation;

∂T (x)
∂x

= T ′;
∂2T (x)

∂x2
= T ′′;

(T (x))−2

[
∂T (x)

∂x

]2

= T−2(T ′)2 = F (T, T ′.)

The question is: whenP is an extremum? This is equivalent
to say that among all curvesT = T (x) going through the
points (xc, Tc) and (xh, Th) one seeks such for which

P

κ
=

xc∫

xh

F (T, T ′)dx (A.3)

is an extremum (we assumeκ = const.). This condition can
be re-written asδP = 0, whereδP is the first variation of
P [8], or

xc∫

xh

(
FT − d

dx
FT ′

)
δTdx = 0, (A.4)

whereFT = ∂F (T, T ′)/∂T etc.
The expression in (A.4) is the variation of the func-

tional F . It is zero for an arbitraryδT if the expression in
the brackets is zero:

FT − d

dx
FT ′ = 0. (A.5)

Equation (A.5) represents the Euler equation of our problem.
More explicitly, Eq. (A.5) can be written as

FT − FTT ′T
′ − FT ′T ′T

′′ = 0 (A.6)

Note that sinceF does not depend explicitly onx, this equa-
tion can be solved by quadratures. Let us calculate in some
detail the terms in Eq. (A.6). We obtain

FT =
∂F (T, T ′)

∂T
=

∂

∂T
[T−2(T ′)2] = −2T−3(T ′)2;

FTT ′ =
∂

∂T ′
FT = −4T−3T ′; FT ′T ′ =

∂

∂T ′
F ′T = 2T−2.

Substitution to Eq. (A.6) leads to:

−2T−3(T ′)2 − [−4T−3T ′]T ′ − 2T−2T ′′ = 0. (A.7)

Finally,

T−2[T−1(T ′)2 − T ′′] = 0. (A.8)

For finiteT , the first factor in Eq. (A.8) is nonzero, and we
arrive at

T−1(T ′)2 − T ′′ = 0, (A.9)
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which is the same as Eq. (A.1). It remains to solve Eq. (A.1).
The standard method of solving differential equations of the
form T ′′=f(T, T ′) with nox in the argument off is to sub-
stitute T ′=z and T ′′=z(dz/dT ). Doing this in Eq. (A.9)
leads to a separation of the variables:dz/z=dT/T . The
integration of both sides of the latter equation leads to

ln z= ln T+const. Coming back to old variables we obtain
T (x)=A exp(bx), which is the equation of the curve, corre-
sponding to the extremum ofP . Since it has to go through
the pointsTc=T (xc)=T (0) andTh=T (xh)=T (L), one fi-
nally obtainsA=Th and b=−L−1 ln(Th/Tc), which ends
the derivation of our Eq. (6).
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