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Abstract

We report molecular simulation and experimental results for simple fluids

adsorbed in activated carbon fibers (ACF), where the adsorbed phase con-

sists of either one or two molecular layers. Our molecular simulations involve

smooth pore-walls for large system sizes and a systematic system size-scaling

analysis. We provide calculations of the Ginzburg parameter to monitor the

self-consistency of our finite size simulation results, based on which we estab-

lish that for system sizes smaller than 60 molecular diameters, fluctuations

are too large to uphold the finite size simulation results. We present scaling

analysis and free energy results for a system size of 180 molecular diameters.

Our scaling analysis reveals a two-stage melting in our bilayer system con-

sistent with KTHNY scaling for the order parameter correlation functions.

Based on the Lee-Kosterlitz scaling of the free energy surface, we establish

that the transitions are first order in the thermodynamic limit. Similar results

for a monolayer established that the transitions were continuous. We provide

scaling arguments to suggest that the change in the order of the transitions in

going from a monolayer to bilayer adsorbed system results from the interac-

tions of defects in the multilayers. We also report experimental measurements
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of CCl4 and aniline (with two confined molecular layers) adsorbed in ACF.

The differential scanning calorimetry and dielectric relaxation spectroscopy

measurements for the transition temperatures are in quantitative agreement

with each other and with our simulation results. We also report nonlinear

dielectric effect (NDE) measurements and show that our data is consistent

with the NDE scaling law for the KTHNY scenario, which we derive. Fi-

nally, we discuss the significance of the six-fold corrugated potential and the

effect of the strength of pore-wall potential on the melting behavior. Both

the simulations and experiments show that the hexatic phase is stabilized by

confinement in carbon pores; for carbon tetrachloride and aniline the hexatic

phase is stable over a temperature range of 55 K and 26 K, respectively. More-

over, this stability increases as the ratio of fluid-wall to fluid-fluid attraction

increases.
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I. INTRODUCTION

For continuous symmetry breaking transitions (such as melting transitions) in two-

dimensions, the Mermin-Wagner theorem states that true long range order ceases to exist1.

Halperin and Nelson proposed the “KTHNY” (Kosterlitz-Thouless-Halperin-Nelson-Young)

mechanism for melting of a crystal in two dimensions2, which involves two transitions of

the Kosterlitz-Thouless (KT) kind3. The crystal to hexatic transition occurs through the

unbinding of dislocation pairs, and the hexatic to liquid transition involves the unbinding

of disclination pairs. Each KT transition is accompanied by a non-universal peak in the

specific heat above the transition temperature, associated with the entropy liberated by the

unbinding of the vortex (dislocation or disclination) pairs, and by the disappearance of the

stiffness coefficient associated with the presence of quasi-long-range order in the system. The

KTHNY theory predicts that the correlation function associated with the translational order

parameter in the crystal decays algebraically with exponent η < 1/3, while long range orien-

tational order is maintained, and the correlation function associated with the orientational

order parameter in the hexatic phase decays algebraically with exponent 0 < η6 < 1/4 while

there is no translational order. The KTHNY theory is an analysis of the limit of stability of

a two-dimensional solid, since it neglects the existence of the liquid phase and thereby does

not impose an equality of the chemical potentials of the solid and liquid phases as the cri-

terion for melting. Therefore, other pathways for two-dimensional melting can not be ruled

out. For example, it is possible for the dislocation unbinding transition to be pre-empted

by grain-boundary-induced melting, as shown by the work of Chui4, which predicts that

the critical value of the defect core energy (Ec) above which the melting cross-over from

grain boundary induced melting to two-stage KTHNY melting is Ec = 2.8kBT 5. Excellent

reviews are available on the subject of two-dimensional melting5 (also see section II).

In this paper we report molecular simulation and experimental results for simple fluids

adsorbed in activated carbon fibers (ACF), whose pore widths are such that they can ac-

commodate one or two molecular layers. Our computer simulations involve smooth walls for
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large system sizes, and we perform a systematic scaling analysis. We provide calculations

of the Ginzburg parameter to monitor the self-consistency of our finite size simulation re-

sults for system sizes (box lengths) up to 180 molecular diameters. We also present scaling

analysis and free energy results for a system size of 180 molecular diameters. Based on the

Lee-Kosterlitz scaling of the free energy surface, we establish the nature (first order vs. con-

tinuous) of the transitions. We also report experimental measurements based on differential

scanning calorimetry, dielectric relaxation spectroscopy, and nonlinear dielectric effect for

CCl4 and aniline (with two confined molecular layers) adsorbed in ACF.

II. PREVIOUS WORK

Experimental and computer simulation studies on the subject of two-dimensional melting

often have the underlying objective of establishing whether or not the pathway of melting

conforms to KTHNY behavior: (1) Does melting occur in two stages mediated by a hexatic

phase? (2) Do the order parameter correlation functions associated with the crystal and

hexatic phases have the appropriate scaling behavior? (3) Are the observed phase transitions

first order or second order in the thermodynamic limit? The different experimental systems

explored in this regard include free-standing liquid-crystalline (LC) films6,7, confined colloidal

suspensions8–11, and adsorbed fluid on a planar substrate12–19.

Computer Simulation Studies of Two-Dimensional Melting. Early simulation studies on

small (<∼ 10000 atoms), strictly two-dimensional systems failed to provide compelling evi-

dence to support the KTHNY melting scenario5,20–22. For systems with repulsive interac-

tions, it was shown by Bagchi et. al.23, using a systematic scaling analysis on large system

sizes (≃ 64, 000 atoms), and subsequently by Jaster24, that the equilibrium properties are

indeed consistent with the KTHNY theory of melting (a single stage melting via first-order

transitions with finite correlations was ruled out). Bagchi et. al.23 have also observed a

first order single stage melting for a two-dimensional system of disks interacting with a soft
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repulsive potential for a small system size, crossing over to two-stage continuous melting

consistent with KTHNY scaling for larger system sizes, suggesting the earlier studies were

plagued by serious system size effects.

Computer simulation studies that directly mimic the liquid-crystalline thin film experi-

ments have not been attempted owing to the complexity of the molecular architecture and

experimental conditions. Idealized simulations of spheres confined between hard walls and

interacting with each other via a model potential that mimic the screened potential in col-

loidal systems9 (but otherwise neglect the solvent) have been performed by Bladon and

Frenkel25, and Zangi and Rice26. The former study reported a strong dependence (and

qualitatively different phase diagrams of the melting region) of melting behavior on the

parameters of the inter-molecular interaction of a two-dimensional square-well fluid, and

attributed the difference to the changing values of the defect core energy25; in particular,

the study puts the two-dimensional hard disks in the single-stage first order melting regime

(rather than the KTHNY regime). In subsequent experiments and simulations carried out by

Rice and co-workers using two different screened (effective) potentials with which confined

colloidal spheres interact9,10,26, a strong dependence of the melting scenario on the inter-

particle interaction, consistent with the computer simulation study by Bladon and Frenkel25

was reported. A clear picture regarding the differing scenarios has not yet emerged due to:

(a) the experimental studies on colloidal systems are faced with the question of attainment

of thermodynamic equilibrium9,10, while the simulation results are for a small system size25,

and are therefore subject to finite-size effects; (b) the calculated value for the defect core

energy Ec for hard disks lie in the KTHNY regime27; (c) the qualitative behavior of these

studies in the limit of a hard sphere potential differs from that of a recent simulation study

by Jaster24 on a large 2-d system of hard disks.

Several computer simulations aimed to mimic an adsorbed fluid on graphite have been

reported28–30. Abraham28 has reported several studies of xenon on graphite in which the

melting transition temperatures are in quantitative agreement with experiment. However,

the existence of an intrinsic hexatic phase could not be demonstrated by the simulations,
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which were performed on fairly small system sizes. Similar conclusions were drawn by Roth29

based on simulations of krypton on graphite, again for a small system size. Alavi30 reported a

simulation study of CD4 on MgO (using a small system size) with melting behavior consistent

with the KTHNY scenario and a defect core energy of 9kBT (KTHNY regime). One notable

difference between the CD4 on MgO system and the Kr, Xe on graphite systems is that,

in the former case, due to the molecular structure of CD4 adsorbed on MgO, the relevant

degrees of freedom at the temperature of study make the adsorbate move in a field-free

manner.

In summary, the simulations on small systems have failed to provide compelling evidence

of the melting picture, and therefore can not be used conclusively to fill in the gaps or

interpret experimental measurements. While the system-size scaling analysis for large system

sizes in the simulations of Bagchi et. al.23 (which indicated a KTHNY melting scenario)

clearly underlines the need to use large system sizes in studying the two-dimensional melting

problem, even such methods do not provide a source of distinction between the first-order

and continuous nature of the transition.

Two-dimensional Melting in Adsorbates Confined in Porous Media. Activated carbon

fibers (ACF) possess micro-crystallites made up of graphene sheets that tend to align in

similar directions, with slit shaped voids between the microcrystals. The spontaneous order-

ing of the molecules adsorbed in these voids into distinct two- dimensional molecular layers

(analogous to the structure of a smectic-A phase in liquid crystals) makes the adsorbed phase

a quasi-two-dimensional system. Microporous ACF can be prepared having a range of mean

pore sizes, ranging from those that can accommodate just a single layer of the adsorbate in

the micropores to those that can accommodate a few layers31. The microcrystals in ACF are

themselves arranged as an amorphous matrix; therefore the maximum in-plane correlation

length of the adsorbed fluid is thought to be limited by the average size of the microcrystals.

Real samples of ACF have different average sizes for their microcystals (ranging from 5 nm

to 100 nm) depending on the method of activation and the source of the carbon material
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used to derive the porous material31. Electron micrographs are commonly employed to de-

termine the average size of the microcrystals, while nitrogen adsorption isotherms are used

to determine the average pore size and pore size distribution. The substrate field induced by

the porous matrix is thought to have a six-fold symmetry like that of graphite. Additionally,

due to the high density of carbon atoms in the graphene microcrystals, the confined fluid

feels a large potential well, and this increases in depth for decreasing pore sizes; this unique

feature induces pronounced layering effects even in multi-layer adsorbate phases, each layer

effectively being two-dimensional. The quasi-two-dimensional phase of adsorbed simple flu-

ids (spherical molecules) do not have the complication of additional coupling due to any

herring bone symmetry, in contrast to the LC systems. In addition, owing to the nanoscopic

length scales, these systems are thermally driven and can be studied under equilibrium (a

challenging issue for the colloidal systems). The large value of the defect core energy30 in

adsorbed systems and the role of out-of-plane motions in stabilizing the hexatic phase in

these quasi-two-dimensional systems have been noted earlier5,26.

III. MOLECULAR SIMULATION METHODS

We performed Grand Canonical Monte Carlo (GCMC) simulations of a fluid adsorbed in

slit-shaped pores of width H , where H is defined as the perpendicular distance between the

planes passing through the nuclei of the first layer of molecules that make up the pore walls

of the slit-shaped pore. The interaction between the adsorbed fluid molecules is modeled

using the Lennard-Jones (12,6) potential with size and energy parameters, σff , and ǫff . The

Lennard -Jones potential was cut-off at a distance of 5σff , beyond which it was assumed to

be zero. The pore walls were modeled as a continuum of LJ molecules using the“10-4-3”

Steele potential32, given by,

φfw(z) = 2πρwǫfwσ2
fw∆

[

2

5

(σfw

z

)10

−
(σfw

z

)4

−

(

σ4
fw

3∆(z + 0.61∆)3

)]

(1)

Here, the σ’s and ǫ’s are the size and energy parameters in the Lennard-Jones (LJ) potential,

the subscripts f and w denote fluid and wall respectively, ∆ is the distance between two
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successive lattice planes of pore wall, z is the coordinate perpendicular to the pore walls and

ρw is the number density of the wall atoms. For a given pore width, H , the total potential

energy from both walls is given by,

φpore(z) = φfw(z) + φfw(H − z) (2)

The strength of attraction of the pore walls relative to the fluid-fluid interaction is determined

by the coefficient α,

α =
ρwǫfwσ2

fw∆

ǫff

(3)

in equation 1. The fluid-fluid interaction parameters were chosen to be those for CCl4
33, with

σff = 0.514 nm, ǫff/kB = 395 K; with these parameters the freezing temperature of bulk CCl4

is reproduced. The parameters for the graphite pore wall interaction to mimic the micropores

in ACF were taken from Steele32, (σww = 0.34 nm, ρw = 114 nm−3, ǫww/kB = 28 K, and

∆ = 0.335 nm). The Lorentz-Berthlot mixing rules, together with the ff and ww parameters,

were used to determine the values of σfw and ǫfw. The simulation runs were performed by

fixing the chemical potential, µ, the volume ,V , of the pore and the temperature, T . Two

pore-widths H = 1σff +σfw = 0.91 nm (monolayer of adsorbate) and H = 2σff +σfw = 1.41

nm (bilayer of adsorbate) , were chosen for study. The rectilinear dimension of the cells were

therefore 180σff × 180σff × H (93 nm × 93 nm × H nm). Typically the system consisted

of up to 64,000 adsorbed fluid molecules. Periodic boundary conditions were employed in

the x and y directions (the xy-plane being parallel to the pore walls) and no long range

corrections were applied. The adsorbed molecules formed distinct molecular layers parallel

to the plane of the pore walls. The simulation was set up such that insertion, deletion and

displacement moves were chosen at random with equal probability. The calculations for the

larger of the chosen pore-width also enable a direct comparison to be made with experimental

measurements for CCl4 confined in porous pitched-based activated carbon fiber ACF A-10,

of mean pore width H = 1.4 nm. We expect the approximation of a structureless graphite

wall to be a good one here, since the diameter of the LJ molecule (0.514 nm) is much larger

than the C-C bond length in graphite (0.14 nm). The state conditions were such that the
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confined phase was in equilibrium with bulk LJ CCl4 at 1 atm. pressure. The simulations

were started from a well equilibrated confined liquid phase at T = 400 K, and in successive

simulation runs the temperature was reduced. Equilibration was for a minimum of 11 billion

steps; the standard deviation of block averages of total energy of the system was 10−4 and

the rate of insertion was equal to that of deletion to a factor of 10−6.

Free Energy Determination. Motivated by the work of Frenkel and co-workers34–36, we

employ the Landau free energy approach that was successful in our earlier studies33,35–37.

The Landau-Ginzburg formalism38 involves choosing a spatially varying order parameter

Φ(~r), that is sensitive to the degree of order in the system. We use a two- dimensional bond

orientational order parameter to characterize the orientational order in each of the molecular

layers that is defined as follows39:

Ψ6,j(~ρ ) =
1

Nb

Nb
∑

k=1

exp(i6θk), (4)

where Nb is the number of nearest-neighbor bonds and θk is the bond angle (see below);

the summation is over the (imaginary) bonds joining the central molecule to its nearest

neighbors. Ψ6,j(~ρ ) measures the hexagonal bond order at position ~ρ in the xy plane within

each layer j, and is calculated as follows. Nearest neighbors were identified as those particles

that were less than a cutoff distance rnn away from a given particle, and belonged to the

same layer. We used a cutoff distance rnn = 1.3 σff , corresponding to the first minimum of

g(r). The orientation of the nearest neighbor bond is measured by the θ coordinate, which is

the angle that the projection of the nearest-neighbor vector on to the xy-plane makes with

the x axis. Ψ6,j(~ρ ), is calculated using equation 4, where the index k runs over the total

number of nearest neighbor bonds Nb at position ~ρ , in layer j. The order parameter Ψ6,j

in layer j is given by Ψ6,j = |
∫

d~ρΨ6,j(~ρ )| /
∫

d~ρ. For the case of LJ CCl4 in slit-shaped

pores, where there is significant ordering into distinct molecular layers, the spatially varying
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order parameter Φ(~r ) can be reduced to Φ(z), and can be represented by,

Φ(z) =
n

∑

j=1

Ψ6,j δ(z − ẑj) (5)

In equation (5), the sum is over the number of adsorbed molecular layers, and ẑj is the

z coordinate of the plane in which the coordinates of the center of mass of the adsorbed

molecules in layer j are most likely to lie. It must be recognized that each of the Ψ6,j ’s are

variables that can take values in the range [0, 1]; the number of layers is n = 1 or n = 2 in our

system. The histograms are collected to evaluate the probability distribution P [Ψ6,1, Ψ6,2].

The Landau free energy38 Λ[Ψ6,1, Ψ6,2] (for the bilayer system) is given by,

Λ[Ψ6,1, Ψ6,2] = −kBT ln(P [Ψ6,1, Ψ6,2]) + Constant (6)

The Landau free energy is computed by a histogram method combined with umbrella

sampling40, using the probability distribution P [Ψ6,1, Ψ6,2]. Detailed procedures to collect

statistics, construct the histograms and to choose the the weighting functions for performing

the umbrella sampling are described elsewhere34–36. The grand free energy of a particular

phase A, ΩA = −kBT ln(Ξ) (where Ξ is the partition function in the grand canonical en-

semble), is related to the Landau free energy by,

exp(−βΩ) =

2
∏

j=1

∫

j

dΨ6,j exp(−βΛ[Ψ6,1, Ψ6,2]) (7)

where the limits of integration in equation 7 are from the minimum value of (Ψ6,1, Ψ6,2) to

the maximum value of (Ψ6,1, Ψ6,2) that characterize the phase A. The grand free energy is

computed via numerical integration of equation 7. The two- dimensional, in-plane positional

and orientational correlation functions (gj(r) and G6,j(r) of layer j), were monitored to

keep track of the nature of the confined phase. The positional pair correlation function

is the familiar radial distribution function. The orientational pair correlation function is

G6,j(ρ) = 〈Ψ∗

6,j(0)Ψ6,j(ρ)〉, where ~ρ = xêx + yêy. The above equations correspond to the

two-layer case. For the one layer case, the Landau free energy reduces to Λ[Ψ6,1] and the

index j in equation 7 assumes a value of 1.
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IV. EXPERIMENTAL METHODS

Sample Preparation. The liquid samples were reagent grade chemicals, and were distilled

twice prior to use in the experiment. The conductivities of the purified dipolar fluid samples

were found to be less than 10−10 ohm−1m−1. The microporous activated carbon fiber (ACF)

samples used were commercially available from Osaka gas company, Japan, with a pore

size distribution of about 5% around the mean pore diameter41. ACF samples with an

average pore width of 1.41 nm were used. The pore samples were previously characterized

by Oshida and Endo by obtaining electron micrographs31,42, and by Kaneko and co-workers

using nitrogen adsorption measurements41. The characterization results for ACF showed

that these amorphous materials consisted of uniform pores formed by graphitic microcrystals,

with an average microcrystal size of 7–10 nm31.

Differential Scanning Calorimetry (DSC). A Perkin-Elmer DSC7 differential scanning

calorimeter was used to determine the melting temperatures and latent heats of fusion, by

measuring the heat released in the melting of aniline and CCl4. The temperature scale

of the DSC machine was calibrated using the melting temperature of pure fluid from the

literature. The temperature scanning rates used for the melting and freezing runs varied

from 0.1K/min to 0.5K/min. The background of each raw DSC spectrum was subtracted,

based on a second-order polynomial fit to the measured heat flow away from the signals

of interest. The melting temperatures in the bulk and confined systems were determined

from the position of the peaks of the heat flow signals, and the latent heats were determined

based on the scaled area under these signals. The melting temperature was reproducible to

within 0.5 oC for fluid adsorbed in pores. The latent heats were reproducible to within 5%.

Dielectric Relaxation Spectroscopy (DRS). The relative permittivity of a medium,

κ∗ = κr − iκi, is in general a complex quantity whose real part κr (also known as the di-

electric constant) is associated with the increase in capacitance due to the introduction of
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the dielectric. The imaginary component κi is associated with mechanisms that contribute

to energy dissipation in the system, due to viscous damping of the rotational motion of the

dipolar molecules in alternating fields. The latter effect is frequency dependent. The exper-

imental setup consisted of a parallel plate capacitor of empty capacitance Co = 4.2 pF. The

capacitance, C, and the tangent loss, tan(δ), of the capacitor filled with the fluid between

the plates were measured using a Solartron 1260 gain impedance analyzer, in the frequency

range 1 Hz - 10 MHz, for various temperatures. For the case of the adsorbate in ACF, the

sample was introduced between the capacitor plates as a suspension of ground ACF parti-

cles of 0.1 mm mesh ACF particles in pure fluid. Due to the large conductivity of ACF,

the electrodes were blocked by teflon. The relative permittivity is related to the measured

quantities by:

κr =
C

Co

; κi =
tan(δ)

κr

(8)

In equation (8), C is the capacitance, Co is the capacitance without the dielectric and δ is the

angle by which current leads the voltage. The complex dielectric permittivity, κ∗ = κr − iκi,

is measured as a function of temperature and frequency.

For an isolated dipole rotating under an oscillating electric field in a viscous medium, the

Debye dispersion relation is derived using classical mechanics43,

κ∗ = κ∞,r +
κs,r − κ∞,r

1 + iωτ
(9)

Here ω is the frequency of the applied potential and τ is the orientational (rotational)

relaxation time of a dipolar molecule. The subscript s refers to static permittivity (low

frequency limit, when the dipoles have sufficient time to be in phase with the applied field).

The subscript ∞ refers to the optical permittivity (high frequency limit) and is a measure of

the induced component of the permittivity. Further details of the experimental methods are

described elsewhere44,45. The dielectric relaxation time (molecular orientational relaxation

time for dipolar molecules) was calculated by fitting the dispersion spectrum of the complex

permittivity near resonance to the Debye model of orientational relaxation.
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Nonlinear Dielectric Effect (NDE). The nonlinear dielectric effect (NDE) is defined as

the permittivity change, ∆ǫ, of the medium in a strong electric field, E:

NDE =
∆ǫ

E2
=

ǫE − ǫE=0

E2
(10)

where ǫE is the permittivity of the medium in a field E. The permittivity ǫ is related to the

dielectric constant κr by the relationship κr = ǫ/ǫo, ǫo being the permittivity in vacuum.

Note that within linear response (for weak fields), the permittivity is independent of the

applied electric field; However, for strong fields, the most general form for the permittivity

(consistent with field reversal invariance) can be written as ǫE = ǫE=0 + bE2 + cE4 + · · · .

By definition, NDE in equation 10 represents the first order (non-linear) response consistent

with the general equation. The NDE was measured using the pulse method using rectangular

millisecond pulses of the electric field with amplitudes ranging from 4× 107 to 9× 107V/m.

The separation between the invar electrodes in the measuring condenser was 2×10−4m, and

the changes in the capacitance were measured to an accuracy of 5 × 10−4pF46.

V. MOLECULAR SIMULATION RESULTS

Our simulations were made to mimic two experimental systems of CCl4 confined in ACF

with one as well as two confined molecular layers. The orientational correlation function

G6,j(r) for equilibrated liquid, hexatic and crystal phases are shown in figure 1 . The long- Fig. 1

range orientational order in the crystal phase, the algebraic decay of orientational order in

the hexatic phase and the exponential decay of orientational order in the liquid phase are

captured in the plots. Since the phases are characterized by long-ranged correlations, we

check for the attainment of equilibrium and artifacts due to finite size of the simulations as

described below.

Simulation results are always for a finite system size, and system-size effects can not be

avoided. When the state conditions are such that the relevant order-parameter correlation

length ξ approaches or exceeds the spatial extent of the simulation cell L, the system crosses
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over to a mean-field behavior47,48. For correlations in the bond-orientational order param-

eter, this is the case in the hexatic phase at all temperatures, and in the liquid phase near

the liquid-hexatic transition. Under these circumstances, the self consistency of the mean

field result is checked by calculating the Ginzburg parameter γGL
49,

γGL =
〈Ψ

2

6,j〉

〈Ψ6,j〉2
=

I(L)

〈Ψ6,j〉2
− 1. (11)

where L2 × H = V , the volume of the system, L is the length of the simulation box, and

I(L) is given by

I(L) =

∫

V
d~ρ G6,j(ρ)
∫

V
d~ρ

(12)

The Ginzburg parameter gives the ratio of the variance in the order parameter (due to

thermal fluctuations) to the square of the average value of the order parameter. Mean field

results are clearly suspect in the regime γGL
>
∼ 1, when long-range fluctuations are likely

to destroy the observed order in the finite size simulations. If γGL ≪ 1, the simulations are

self-consistent, and the ordered phase observed in the simulations is stable against thermal

fluctuations. The Ginzburg parameter for different system sizes is calculated (using equa-

tion 11) by numerically integrating equation 12, and are reported in Table I. Our calculations Tab I

for the bilayer system (H = 1.41 nm) indicate that the simulation results for these quasi-

two-dimensional systems are only reliable for systems sizes >
∼ 60σff . For smaller system

sizes, the bond-orientational order parameter fluctuations are too large to validate the finite

size results from computer simulations. Therefore, we report the free energy calculations

and scaling behavior for system sizes of 60 and 180σff .

To quantify the scaling properties of the orientational correlation function (figure 1) in

each phase, we plot log[I(LB)/I(L)] as a function of log[LB/L] in figure 2, for different Fig. 2

values of the block length. The block length LB < L defines the subsystem LB ×LB ×H for

which the integrals (equation 12) were evaluated; the integrals I(LB) and IL were calculated

by numerically integrating equation 12. The expected KTHNY scaling for liquid, hexatic,
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and crystal are given by2:

G6,j(r) ∼































exp(−r/ξ) liquid

r−η hexatic

Constant 6= 0 crystal

(13)

where ξ is the correlation length and η is the exponent characterizing the algebraic decay of

the order parameter correlation function. (The exponent η has its origins from the Ornstein-

Zernikie formalism50 discussed later, however, the exponent values and functional forms for

liquid-liquid critical phenomena and KTHNY formalisms are different from one-another).

Equations 12 & 13 lead to the following scaling for I(L):

I(L) =































Constant/L2 liquid

L−η/(2 − η) hexatic

Constant 6= 0 crystal

(14)

Therefore, in figure 2, a slope of −2 corresponds to the liquid phase having a finite correlation

length; a slope of −1/4 corresponds to an algebraic decay of G6,j(r) with exponent −1/4

and is observed for the hexatic phase near the hexatic-crystal transition; a slope of 0 is

observed for the crystal phase, confirming the true long-range orientational order. The

scaling properties shown in figure 2 is further evidence for the attainment of equilibrium in

our simulations.

The order of the phase transition was determined by examining the dependence of the

free energy barrier separating two phases as a function of system size. In doing so, we

consider only those system sizes for which γGL ≪ 1. In order to determine the order of

the phase transition using the Lee-Kosterlitz scaling analysis51 of the free energy surface,

we obtained the Landau free energy functions at the exact transition temperatures for the

corresponding system size. This was done as follows: the Landau free energy surface was

calculated at a temperature close to the transition, from which we calculated the grand

free energies at that temperature. Then, by numerically integrating the Clausius-Claperon
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equation, d(Ω/T )/d(1/T ) = 〈U〉 − µ〈N〉, we located the exact transition temperature. The

Landau free energy function was re-calculated at the transition temperature by using a

weighting function equal to exp(βΛ[Ψ6,j]) from the initial calculation. This procedure was

repeated for each system size. The Landau free energy and the grand free energy results

for the system size of 180σff are provided in figure 3. The relative stability of the liquid, Fig. 3

hexatic and crystalline phases are inferred from the Landau free energy plot (figure 3), and

the exact transition temperatures are given by the grand free energy plot (figure 4). For the Fig. 4

bilayer adsorbed fluid, the free energy barrier separating hexatic and crystal phases is a linear

function of system size (figure 3a). This implies that the mechanism of phase transition is

via nucleation and is a clear indication of a first order phase transition in the thermodynamic

limit. The critical nucleus at the transition temperature is equal to the system size, implying

a Ld−1 (d being the dimensionality of the system) dependence on system size51. In contrast

to the bilayer case, the Lee-Kosterlitz scaling of the free energy surface for the adsorbed

monolayer (H = 0.91 nm) in figure 3b establishes that the transitions are continuous in the

monolayer. In this case the free energy barrier separating the liquid and the hexatic phase

is independent of system size, a clear signature of second order transition51. We attribute

this remarkable change in the mechanism of phase transition (spinodal decomposition in the

monolayer to nucleation in the bilayer) to the interaction of defect structures across layers

(see section VII).

VI. EXPERIMENTAL RESULTS

The DSC and DRS results for CCl4 and aniline confined in ACF are provided in fig-

ures 5 and 6. The DSC scans show two peaks for each fluid reminiscent of liquid-hexatic Figs. 5,6

(high temperature) and hexatic-crystal (low temperature) heat capacity peaks associated

with Kosterlitz-Thouless phase transitions. The DRS measurements for the dielectric con-

stant for confined aniline confirm the existence of two phase transitions (figure 6a). In

addition, the molecular orientational relaxation times τ , (figure 6b) are consistent with the
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existence of liquid (τ ∼ns), hexatic (τ ∼ µs), and crystalline (τ ∼ms) phases. The transition

temperatures from simulations and DSC for CCl4 are in good agreement; also, the transition

temperatures inferred from the DSC and DRS results for aniline are in agreement (Table II).

The NDE measurements for confined CCl4 and aniline in ACF are provided in figure 7 and Fig. 7

Table II. The NDE signals show signatures of divergence at the liquid-hexatic and hexatic- Tab II

crystal transition temperatures. The NDE results for the transition temperatures for CCl4

and aniline are in near quantitative agreement with the simulation result, and also with those

from DSC, and DRS (Table II). Below, we show that the scaling of the NDE signal with

temperature is consistent with the KTHNY theory for liquid-hexatic and hexatic-crystal

transitions.

It was empirically known that the dipolar fluctuations associated with polarizability con-

tributed to a positive signal for NDE. The anomalous increase in NDE in the vicinity of the

phase transition point, reflecting the onset of long-range correlations and associated dipo-

lar fluctuations in the system, has been experimentally documented45. Based on a droplet

model for treating critical fluctuations by Oxtoby and Metiu53, the dipolar fluctuations near

a critical point have been correlated (linearly) with the relevant order parameter fluctua-

tions. De Gennes54 showed that the conformity to the droplet model by Oxtoby and Metiu53

immediately leads to NDE scaling laws that are similar to those for critical fluctuations in

light scattering experiments. The scaling law for critical opalescence in light scattering

(where the order parameter correlation function is g(r) associated with density fluctuations)

is given by the familiar expression49,

I(~q) = 〈

N
∑

α,β=1

exp(i~q · ~xα) exp(i~q · ~xβ)〉 = N

[

1 +

∫

g(r) exp(i~q · ~r) ddr.

]

(15)

In the above equation, I(~q) = NS(~q), is the intensity measured in scattering experiments,

S(~q) is the familiar structure factor, d is the number of dimensions and N the total number

of molecules. The double summation is over the total number of molecules, where ~xα, ~xβ

represent the coordinate vector of the given molecule. The second equality in equation 15 fol-

lows from evaluating the ensemble average49. By employing the extended Ornstein-Zernikie
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representation50 for the density-density correlations (above Tc), namely,

g(r) − 1 ∼
1

rd−2+η
exp(−r/ξ), (16)

where ξ is the correlation length. The integral in equation 15 in the limit q → 0 reduces to

I(q) ∼ ξd−1−η. (17)

The equation 16 corresponds to Fischer’s extension of the original Ornstein-Zernikie formal-

ism to alleviate a logarithimic divergence of g(r) for large r in two-dimensions. Therefore,

the equation provides the definition for the critical exponent η. The exponent satisfies the

equality (2−η)ν = γ, for systems with Ising symmetry, where ν (defined below) is the critical

exponent associated with the correlation length, and γ that with isothermal compressibility.

According to the droplet model53, the analogous expression for NDE is given by,

NDE ∼

∫

〈Φ(0)Φ(r̃)〉 exp(iq̃ · r̃) ddr, (18)

where, 〈Φ(0)Φ(~r)〉 is the order parameter correlation function and d the dimensionality of

the system. The rationale behind the droplet model is that the NDE signal results from the

scattered intensity caused by the effective dipole-dipole correlations in the system, the same

way light scattering intensity results from density-density correlations.

As shown by de Gennes and Prost54, the droplet model leads to the experimentally

observed scaling for NDE in the vicinity of a liquid-liquid critical point in three dimensions,

namely, NDE ∼ ξd−1−η, with ξ = ξot
−ν , and t = |T − Tc|/Tc. The theoretically predicted

NDE scaling for this system (Ising symmetry, d=3) is therefore,






























































t−(2−η)ν d = 3, Ising; e.g., liquid-liquid

t−1.25 ν = 0.64, η = 0.041; 3-d Ising model

t−1.28 ν = 0.64, η = 0; Ornstein-Zernikie

t−1 ν = 0.5, η = 0; Mean field theory

t−1 dipolar fluids; experiment45.

(19)
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Encouraged by the agreement of the phenomenological NDE scaling laws with experi-

ment for systems with Ising symmetry, we derive the analogous NDE scaling laws near the

liquid-hexatic, and hexatic-crystal phase boundaries. Our analysis was greatly facilitated

because Halperin and Nelson2 and Young2 have worked out the scaling of the relevant order

parameter correlations to be used in equations 15 and 17. The order parameter correlations

above the transition temperatures for the liquid-hexatic and hexatic-crystal transitions have

the form, GT,6(r) ∼ exp(−r/ξ+), where the subscripts T, 6 correspond to translational and

orientational correlation functions, and + refers to the correlation function above the tran-

sition temperature, i.e., t > 0. Above the hexatic-liquid phase transition temperature,

ξ+ = A exp(B/|t|ν), with ν = 0.5 based on a renormalization group analysis. Similarly,

the translational order parameter correlation length is given by ξ+ = A exp(B/|t|ν), with

ν = 0.37 for a smooth substrate, above the crystal-hexatic phase boundary. The phenomeno-

logical NDE scaling directly follows from using equation 17 (note that η = 0, d = 2),

1/NDE = A exp(−B/|T − Tc|
ν) (20)

with ν = 0.5 for the liquid-hexatic (high temperature) transition and ν = 0.37 for the

hexatic-crystal (low temperature) transition.

The NDE scaling with temperature for confined aniline is re-plotted in figure 8 along Fig. 8

with the NDE scaling law (equation 20). The results show the consistency of the NDE

signals with KTHNY scaling laws for the liquid-hexatic and hexatic-crystal transitions. The

estimates for the exponent ν for liquid-hexatic and hexatic-crystal transitions based on the

experimental measurements is currently not possible owing to the nature of the ACF sample;

true divergence is not observed in our measurements as the length of the in-plane correlations

in the fluid are curtailed by the finite size of the graphitic microcrystals in ACF. Therefore,

NDE signals close to the transition temperatures for an infinite system are not accessible in

our experiments. Instead, the NDE signals in our experiment correspond to a finite system

size of 5 nm, the average size of the graphitic microcrystal (in the xy plane) in our ACF-A10

sample.
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VII. DISCUSSION

Our computer simulations for a bilayer of adsorbed fluid in a slit-pore with smooth walls

has established the existence of two-stage melting in the thermodynamic limit via system

size scaling analysis. Based on the calculations of the Ginzburg parameter we establish that

for system sizes smaller than 60 molecular diameters, fluctuations are too large to uphold the

finite size simulation results. Based on the Lee-Kosterlitz scaling of the free energy surface,

we establish that the transitions are first order in the thermodynamic limit. Similar results

for a monolayer established that the transitions were continuous. Our experimental results

rely on indirect evidence based on phase transitions (structural measurements are considered

direct evidence). Nevertheless, the quantitative agreement between the simulations and

DSC, DRS, and NDE measurements, make a strong case for the existence of KTHNY melting

and therefore a hexatic phase in the confined system. This interpretation, if correct, shows

that the hexatic phase is stable over a wide temperature range, 55 K for CCl4 and 26 K for

aniline. This large range of state conditions over which the hexatic phase is stable may be

unique to confined fluids in porous media.

Effect of the Six-Fold Potential. The main difference between the simulation results and

the experimental results reported in this paper is that the former corresponds to a smooth

substrate, while the latter corresponds to a substrate with 6-fold symmetric potential. On

a theoretical basis, the effects of the six-fold symmetry of the pore potential and that of

the finite size of the graphitic microcrystals combined might be expected to nullify the

liquid-hexatic phase transition and cause a rounding of divergences associated with the

hexatic-crystal transitions. The latter is observed in the NDE measurements (the NDE

signals do not diverge), while the former manifests itself as a remnant KTHNY behavior,

presumably due to a weak six-fold substrate potential. It is worth pointing out that the LJ

diameters of CCl4 and aniline (0.5-0.6 nm) are much larger than the C-C bond length in

graphite (0.14 nm), so that the fluid molecules only feel a mild corrugation in the fluid-wall
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potential in passing along the surface. This feature contrasts with the situation for earlier

experiments concerning Xe, Ar, and Kr on graphite substrates, where the LJ diameters

for the fluid are much smaller and comparable to the C-C spacing in graphite. There is

evidence of an intrinsic hexatic phase even for the case of Xe in graphite15,16; therefore,

for substrate molecules larger than Xe, we expect the crystal to melt into a hexatic phase

with intrinsic stiffness with respect to bond-orientational fluctuations. While we note the

quantitative agreement in transition temperatures between simulations and experiments

and have described the respective domains of validity, the question of whether an intrinsic

hexatic phase is observed in a realistic simulation with six-fold symmetric substrate potential

remains to be answered. Simulations are currently in progress to address this question. On

the experimental side, the challenge is to synthesize a porous sample with uniform pores

with large microcrystal sizes to examine the scaling for several decades in |T − Tc|/Tc on

a log scale, and to obtain direct structural evidence of the hexatic phase via scattering

experiments.

Effect of Multi-Layers on KTHNY Melting. The scaling of the order-parameter cor-

relation functions in the simulations (figure 2) are consistent with the KTHNY behavior,

implying that it is the vortex excitations that govern the equilibrium behavior in the quasi-

two-dimensional systems and that the melting transition is defect-mediated. Moreover, for

a quasi-two-dimensional monolayer, the Kosterlitz-Thouless transitions are continuous37,

while for quasi-two-dimensional bilayers the Kosterlitz-Thouless transitions become first-

order (figure 3). We ascribe this deviation from 2-d behavior to the interactions between

the defect configurations in different layers, based on the following scaling arguments.

On heuristic grounds3, the free energy of exciting a vortex pair of opposite wind-

ing numbers relative to the ordered phase in the xy model in 2-d is given by

∆F = (πJ − 2kBT ) log(L), J being the interaction energy of two neighboring spins with

the same alignment and L being the distance between the vortex cores. This is the

essence of the Kosterlitz-Thouless (KT) transition. If we consider two planes of xy mod-
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els interacting with each other, and the vortices in one layer are perfectly in alignment

with those in the second layer, the free energy relative to the ordered phase is given by

∆F (KT) = (2πJ − 2kBT ) log(L), which is qualitatively the same as the KT behavior. This

configuration, however, corresponds to a reduced entropy situation because the number of

different ways of placing the aligned vortex pairs is the same as the single layer case. A

second higher entropy scenario exists, where a vortex in one layer is aligned with a vortex

of the opposite winding number in the other layer, with the cores displaced by distance A.

Such a situation corresponds to a free energy (see Appendix): Appendix

∆F = ∆FKT + (π − 1)J ′L2 + J ′AL ln L − kBT ln(1 + πA2) (21)

where J is the interaction of nearest neighbors of spins with the same alignment, L is the

in-plane distance between vortex cores, ∆F (KT) = (2πJ − 2kBT ) log(L) is the Kosterlitz-

Thouless free energy3, J ′ is the nearest-neighbor interaction between layers and in general

can be different from J , and A is the “offset-distance” between vortices as defined above.

Treating L as the order parameter, the free energy profile is obtained by the locus of points

that minimize ∆F , the variational parameter being A. The locus of points minimizing ∆F

is qualitatively different from that for the true KT behavior, given by ∆F (KT) (figure 9)

. In particular, at small separations of the vortices, the bound state actually exists as Fig. 9

a metastable state for T > Tc, a clear signature of a first-order phase transition. Figure 9

depicts the free energy profile for the monolayer case and bilayer case at a temperature kBT =

1.5, assuming 2πJ = 1 and (π−1)J ′ = 0.2 (where J, J ′ are in units of kBT ). The plot marked

by the solid line represents ∆F (KT), the true KT scenario, at a temperature, T , greater than

the transition temperature, Tc, for which the lowest free energy state corresponds to L = ∞,

i.e., the vortices are unbound. Moreover, the bound state (L = 1) is unstable and remains

so, as long as T > Tc, and therefore the transition is continuous (second-order). The set of

dotted lines are plotted according to equation (21) for different values of the offset distance

A. It is immediately clear that the locus of points minimizing ∆F is qualitatively different

from the KT plot (equation for ∆F (KT)). In particular, at small separations of the vortices,
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the bound state actually exists as a metastable state for T > Tc, a clear sign of a first-

order phase transition. In other words, the vortex excitations that lead to equation A-7 (see

Appendix) imply a pathway for nucleation of the ordered phase, i.e., by the annihilation

of vortices ~U+ and ~U− across layers. This is possible only if hopping of particles between

layers are allowed, such as in our confined fluid system.

The simulations and above arguments pertain to smooth pore walls. Therefore, the effect

of the six-fold substrate potential was ignored while taking into account the strong potential

due to the porous matrix. To our knowledge, this is the first report of the effect of multi-

layers on KTHNY behavior.

Effect of Strength of the Pore Potential. It was remarked earlier, based on the evidence

from simulations and experiments, that the hexatic phase was stable over a large temperature

range for CCl4 and aniline. The ratio of the strength of the fluid-wall interaction to the fluid-

fluid interaction, α (equation 3), has a significant effect on the melting phase diagram33 (see

figure 10); in particular, the larger the value of α, the larger the temperature range over Fig. 10

which the hexatic phase is stable. Therefore, fluids with purely dispersive interactions

(e.g., CCl4, methane, benzene etc.) confined in ACF, with large values of α show a large

temperature range of stability for the hexatic phase. For strongly dipolar fluids, α is smaller,

the temperature range of stability of the hexatic phase decreases33, and may vanish for

sufficiently small α.
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APPENDIX

We give here the derivation of equation 21 for a bilayer of the xy model of spins on

a lattice. We consider two planes of xy models interacting with each other; vortices with

opposite winding numbers in one layer are perfectly in alignment with those in the second

layer (i.e, the vortex cores span two layers). The free energy relative to the ordered phase

is given by3:

∆F (KT) = (2πJ − 2kBT ) log(L) (A-1)

which is qualitatively the same as the KT behavior (solid line in figure 9). This configuration,

however, corresponds to a reduced entropy situation because the number of different ways

of placing the aligned vortex pairs is the same as the single layer case. A second, higher

entropy scenario exists, where a vortex in one layer is aligned with a vortex of the opposite

winding number in the other layer, with the cores displaced by distance A.

Vortices of positive and negative winding numbers whose cores are displaced by length A

are represented as vector fields ~U+ and ~U−, given by:

~U+ = (x − A)êx − yêy (A-2)

~U− = −yêx + (x − A)êy (A-3)

where ex, ey are unit vectors in the x and y directions. The interaction energy E relative to

the ordered phase, for the given spin fields ~U+ and ~U− in each layer, is given by:

E = J ′

∫ L

0

∫ L

0

~U+ · ~U− dx dy + πJ ′L2 (A-4)

= (π − 1)J ′L2 + J ′AL ln L (A-5)

and the excess entropy associated with placing the cores with an offset distance A is given

by S = kB ln(1 + πA2). The free energy relative to the ordered state is given by:

F = 2πJ ln L − 2kBT ln L + (π − 1)J ′L2 + J ′AL ln L − kBT ln(1 + πA2) (A-6)

= ∆FKT + (π − 1)J ′L2 + J ′AL ln L − kBT ln(1 + πA2) (A-7)
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FIGURES

FIG. 1. Orientational correlation functions for the confined bilayer of adsorbate (H = 1.41 nm):

liquid (360 K), hexatic (335 K), and crystal (290 K) phases.

FIG. 2. Scaling behavior of orientational correlation functions. The solid line corresponds to

zero slope, the dashed line corresponds to a slope of −1/4 and the dotted line corresponds to a

slope of −2.

FIG. 3. (a) Landau free energy functions for two different system sizes 60σff and 180σff for a

pore width of H = 1.41 nm at the hexatic-crystal transition. The temperature was T = 293 K for

the 60σff system, and T = 290 K for the 180σff system. (b) Corresponding results for H = 0.91 nm

system at the liquid-hexatic transition, for the 60σff system (T = 390 K) and 180σff (T = 387 K).

FIG. 4. The grand free energy per mole for liquid, hexatic and crystal phases (H = 1.41 nm);

the cross-over points correspond to phase transitions and give the transition temperatures (see

Table II).

FIG. 5. DSC scan for CCl4 and aniline confined in activated carbon fiber ACF A-10 at a

temperature scanning rate of 0.1 K/min. The peaks are interpreted as the liquid-hexatic (high

T ) and hexatic-crystal (low T ) transitions. The approximate transition temperature is located at

the tail of each peak in the low temperature side (see Figure 9.4.3 on page 550 of Chaikin and

Lubensky49).

FIG. 6. DRS temperature scan (the sample was equilibrated at each temperature) for aniline

confined in ACF-A10, as a function of temperature indicating phase transitions (dashed lines), (a)

capacitance; (b) molecular orientational relaxation time (τ). The disappearance of the relaxation

branch due to conductance of the sample is believed to correspond to the liquid-hexatic transition,

and the change in the relaxation time of the confined fluid is interpreted as the occurrence of the

hexatic-crystal phase transition52. The relaxation branch corresponding to the Maxwell-Wagner

effect occurs as a result of signal dispersion due to the suspended ACF particles in bulk aniline52.
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FIG. 7. NDE for (a) CCl4, and (b) aniline, confined in activated carbon fiber ACF A-10. The

peaks correspond to the liquid-hexatic (L/H) and hexatic-crystal (H/C) transitions. Lines are

drawn through the points as guide to the eye.

FIG. 8. NDE scaling for aniline confined in activated carbon fiber ACF A-10. The filled circles

correspond to liquid above the L/H phase transition, and the filled squares correspond to the

hexatic above the H/C phase transition. The solid lines represent a fit to the scaling law with

the theoretically predicted exponents (see legend). For the liquid (filled circles) A = exp(34.52),

B = 6.48, ν = 0.5, Tc = 42◦C; for the hexatic (filled squares) A = exp(32.46), B = 0.338 , ν = 0.37,

Tc = 27◦C.

FIG. 9. Free energy scaling for a set of interacting vortex pairs in a bilayer according to the

equation for ∆F (KT) and equation 21. The distances L and A are in dimensionless units (scaled

by the lattice length) and the free energy is in units of kBT .

FIG. 10. Global phase diagram of a fluid in a slit pore of width H = 3σff from simulations

and free energy calculations33,37 (open symbols) and experiment (filled symbols)33,37,55,56,52,41,57.

Three different phases are observed: liquid (L), hexatic (H), and crystalline (C). The dashed

line represents an extrapolation of the phase boundaries based on MC simulations without free

energy calculations. The simulations are for a LJ fluid in slit-pore with different values of α. The

experiments are for various adsorbates confined within activated carbon fibers (ACF, mean pore

width 1.4 nm): H2O
55 (α = 0.51), C6H5NO2

56 (α = 1.22), C6H5NH2
52 (α = 1.75), CH3OH55

(α = 1.82), CCl4
41,37 (α = 1.92), C6H6

57 (α = 2.18).
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Table I: Ginzburg parameter

for different L and T .

T/K 10σff 40σff 60σff 180σff

340 8.98 1.95 0.117 0.038

330 6.4 1.7 0.102 0.029

320 4.29 1.17 0.098 0.019

310 3.11 0.97 0.16 0.0189

300 3 0.937 0.176 0.0189

Table II. Transition temperatures from simulation and

experiment for CCl4 and aniline in ACF-10.

Fluid Low Tc/K (H/C) High Tc/K (L/H)

Simulation Expt. Simulation Expt.

CCl4 290 298a, 295b,c 348 K 348a, 353b, 352c

Aniline – 301a, 298b, 300c – 325a, 324b, 315c

aDSC, bDRS, cNDE
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