
transport together with acceptable electronic conductivity. As

shown in Fig. 3c, LFP/GN demonstrates acceptable rate perfor-

mances though partial graphene wrapping limits the ion dif-

fusion to inside LFP to some extent. Fig. 3d shows the cyclic

voltammetry curves of LFP@GN and LFP/GN (scanning rate:

0.1 mV s�1). The lower and weaker redox peaks of LFP@GN

than the LFP/GN cases indicate a lower electrochemical reac-

tivity of LFP@GN which is resulted from the shower Li+ diffu-

sion, which is in accordance with the DSC results. Based on

the electrochemical impedance spectroscopy (EIS) profiles

(Fig. 3e), it is found that the charge-transfer resistance of

LFP@GN is much larger than that of LFP/GN, which is related

to the Li+ extraction and insertion reactions. This result fur-

ther suggest that partial graphene wrapping is beneficial to

the performance of LFP, while the full and tight graphene

wrapping is resistive to the Li+ transport, resulting in the large

charge transfer resistance.

In this study, we use graphene as an ideal model to probe

how carbon coating works in the enhancement of the electro-

chemical performance of LIB. The results indicate that a partial

graphene coating provides a balance between increased elec-

tron transport and fast ion diffusion which shows an improved

electrochemical performance, while full and tight graphene

wrapping totally isolates active materials from the electrolyte

and retards ion diffusion. Generally, an ideal carbon coating for

LIB cathode should be characterized by highly graphitic struc-

ture guaranteeing excellent electron transport property to-

gether with the unimpeded path for fast ion diffusion.
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Nanosized carbon systems, including the low-dimensional

structures, are of current interest due to their unconventional

properties and potential applications in nanotechnology and

nanoelectronics (molecular electronics or spintronics). A sin-

gle sheet of graphite called graphene has peculiar electronic

and magnetic properties resulting from quantum effects [1].

Due to that the systems built of carbon nanoparticles con-

nected by single graphene fragments can exhibit specific elec-

trical transport properties.

Activated carbon fibers (ACFs) are mostly composed of

graphite-like fragments which create the so-called nanogra-

phitic units (NGUs) [2]. NGUs are turbostratic stacks of 3–6

graphene sheets and a single ACF can be described as a texture

of NGUs due to their random arrangement. The mechanical

linkages (connections) between the NGUs are considered to

form potential barriers for electron transport. Thus the NGUs

create a system of electrically separated conducting particles,

where conditions for existence of hopping, tunneling or Cou-

lomb repulsion (at the edges of NGU) mechanisms are fulfilled

according to the specific nanoparticle arrangement. ACF

exhibits peculiar electronic transport behavior where effects

characteristic of systems of quantum wells are controlled by

the level of localization of carriers within the NGUs.

In our previous work we have suggested that the NGU sys-

tem can be treated as a quantum-dot matrix [2,3], where it is

possible to control the charge carrier transport by introduc-

tion of various molecules (adsorption) inside the porous tex-

ture of ACF. Presented results allow us to discuss the

problem from the point of view of dielectric properties, with

the dielectric constant as an important parameter used in dif-

ferent models.

Due to the host–guest interactions between the adsorbed

molecules and the NGU system, parameters of quantum wells

are modified [4] and a strong change in the localization of

electrons within the system appears. This effect has been ob-
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Fig. 1 – Resistivity versus temperature. Main figure shows the

changes of q over the low temperature region. The inset zoom

change of resistivity shifts towards the higher temperatures w

evidences that localization is an increasing function of dipole
served with electron paramagnetic resonance (EPR) [2]. We

have shown that dipolar guest molecules cause the strongest

changes of the EPR signal of ACF [2–4]. The changes of locali-

zation of electrons with lowering of the temperature have

also been observed in the electrical transport measurements

(and agreed with the EPR results), but so far experiments have

been carried out only for ACF with empty pores.

In this letter we present the results of resistivity measure-

ments performed for the ACF system described in our previ-

ous papers [2–4] with various guest molecules adsorbed

within the pores. Pores were filled by injection of liquid guest

molecules into the carefully pre-evacuated quartz tube con-

taining the sample. This ensures that all accessible pores

are filled with guest molecules. Similar method has been used

in our dielectric spectroscopy and X-ray diffraction studies of

phase transitions and high-pressure effects inside the pores

[5]. To avoid evaporation of the guest molecules during the

measurement procedure, samples were quickly cooled down

to 4.2 K and the measurements were performed in the heating

regime. Fig. 1 shows the rapid decrease of electrical resistivity

q with the temperature T increase. Temperature-dependent

localization is shifted towards the higher T values when the

dipole moment of the guest molecules increases. The shift

is the result of the stronger localization generated by guest

molecules with larger dipole moment.

q versus T behavior shown in Fig. 1 is usually described in

the frame of granular metal model [6] where electrical resis-

tivity q follows the equation: q = q0 exp(T0/T)1/2; q0 is a propor-

tionality constant. T0 parameter is defined by the slope of the

line when plotting q in the logarithmic scale against T�1/2.

According to the different models presented in Ref. [7] the lin-

ear behavior over a wide temperature range (Fig. 2) evidences

the charge-energy-limited tunneling conduction (CELTC),

used also to describe the granular metallic systems [6]. Simi-

lar behavior with carrier hopping between the localized states
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Presence of guest molecules in ACF’s porous system could

also influence the behavior of nanographitic system in a dif-

ferent way, e.g. paramagnetism could be suppressed as a re-

sult of structural changes [9] resulting from the so-called

high-pressure effect [5]. Such changes are also discussed in

our earlier papers, e.g. [3].

Presented results are in good agreement with our previous

EPR measurements and show that electronic transport in dis-

ordered carbon-based systems is very sensitive to the adsorp-

tion of guest molecules, with dipole moment playing an

important role. Further research on the electronic transport

in nanocarbons should aim at the better understanding of

the properties of the single NGUs (for example by means of

the scanning tunneling spectroscopy which can give insight

into the local density of states of NGU) and the potential bar-

riers between them in order to propose more exact model of

controlled charge transport in nanocarbons and hopefully

some application solutions.
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has been observed in low temperatures for various tempera-

ture-treated carbon materials [8].

In general, when talking about granular systems with the

hopping conduction, the T0 parameter describes the energy

which is needed to overcome the barrier separating the nano-

granules (which, in our case are the NGUs). In the CELTC mod-

el T0 is proportional to the charging energy Ec which is given by

Ec = 2e2/Kd [6] where e is the electronic charge and K is the

dielectric constant of the medium separating the nanogran-

ules of diameter d. This way the T0 parameter should

decrease when K increases. Such tendency is shown in Fig. 2
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